题目内容
已知数列{an}满足a1=1,an=an-1+2n(n≥2),则a7=( )
| A、53 | B、54 | C、55 | D、109 |
分析:由于数列{an}满足a1=1,an=an-1+2n(n≥2),利用“累加求和”an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1,及等差数列的前n项和公式即可得出.
解答:解:∵数列{an}满足a1=1,an=an-1+2n(n≥2),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n+2(n-1)+…+2×2+1
=2×
+1
=n2+n-1,
当n=1时也成立,∴an=n2+n-1.
∴a7=72+7-1=55.
故选:C.
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n+2(n-1)+…+2×2+1
=2×
| (n-1)(2+n) |
| 2 |
=n2+n-1,
当n=1时也成立,∴an=n2+n-1.
∴a7=72+7-1=55.
故选:C.
点评:本题考查了“累加求和”方法、等差数列的前n项和公式,属于基础题.
练习册系列答案
相关题目