题目内容
医学上为研究传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的增长数与天数的关系记录如下表.已知该种病毒细胞在小白鼠体内的个数超过108的时候小白鼠将死亡.但注射某种药物,将可杀死其体内该病毒细胞的98%.天数t | 病毒细胞总数N |
1 | 1 |
2 | 2 |
3 | 4 |
4 | 8 |
5 | 16 |
6 | 32 |
7 | 64 |
… | … |
(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天)
(2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)
(已知:lg2=0.301 0)
思路点拨:(1)关键是将病毒细胞总数与天数的函数关系式写出来——这要从所给的表中搜索.(2)关键是求出(1)之后小白鼠的体内还剩余多少病毒细胞.
解:(1)由题意病毒细胞关于时间n的函数为y=2n-1,则由2n-1≤108,两边取对数得(n-1)ln2≤8,n≤27.5,即第一次最迟应在第27天注射该种药物.
(2)由题意注入药物后小白鼠体内剩余的病毒细胞为226×2%,
再经过x天后小白鼠体内病毒细胞为226×2%×2x,
由题意226×2%×2x≤108,两边取对数得
26lg2+lg2-2+xlg2≤8,得x≤6.2,
故再经过6天必须注射药物,即第二次应在第33天注射药物.
医学上为研究传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的增长数与天数的关系记录如下表. 已知该种病毒细胞在小白鼠体内的个数超过108的时候小白鼠将死亡.但注射某种药物,将可杀死其体内该病毒细胞的98%.
(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天)
(2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)
已知:lg2=0.3010.
|
医学上为研究传染病传播中病毒细胞的发展规律及其预防,将病毒细胞注入一只小白鼠体内进行实验,经检测,病毒细胞的总数与天数的关系记录如下表.
| 天数t | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … |
| 病毒细胞总数N | 1 | 3 | 9 | 27 | 81 | 243 | 729 | … |
(1)根据表格提供的数据,写出N关于t的函数解析式.
(2)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?
(3)按(1)中的结论,第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天,参考数据:lg3=0.4010.)
天数t | 病毒细胞总数N |
1 2 3 4 5 6 7 … | 1 2 4 8 16 32 64 … |
(1)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?(精确到天)
(2)第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天)
(已知lg2=0.3010)
| 天数t | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … |
| 病毒细胞总数N | 1 | 3 | 9 | 27 | 81 | 243 | 729 | … |
(1)根据表格提供的数据,写出N关于t的函数解析式.
(2)为了使小白鼠在实验过程中不死亡,第一次最迟应在何时注射该种药物?
(3)按(1)中的结论,第二次最迟应在何时注射该种药物,才能维持小白鼠的生命?(精确到天,参考数据:lg3=0.3010.)