题目内容

已知等差数列{an}满足:a3=9,a5+a7=30,{an}的前n项和为Sn
(1)求an及Sn
(2)已知数列{bn}的第n项为bn,若bn
1
2
bn+1an(n∈N*)
成等差数列,且b1=3,设数列{
1
bn
}
的前n项和Tn.求数列{
1
bn
}
的前n项和Tn
分析:(1)设等差数列{an}的公差为d,依题意,可求得d及a1,从而可求an及Sn
(2)依题意,可求得bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1=n(n+2),利用裂项法可得
1
bn
=
1
2
1
n
-
1
n+2
),从而可得数列{
1
bn
}的前n项和Tn
解答:解:(1)设等差数列{an}的公差为d(d≠0),因为a5+a7=30,
又∵a5+a7=2a6
∴a6=15;
∴d=
a6-a3
6-3
=2,又a3=9,
∴an=a3+(n-3)d=9+(n-3)×2=2n+3,
∴a1=5,
∴Sn=
n(a1+an)
2
=
n(5+2n+3)
2
=n2+4n.
(2)由(1)知b1=3,
∵bn
1
2
bn+1,an成等差数列,
∴an+bn=2×
1
2
bn+1(n∈N*),
∴bn+1-bn=an
∴bn-bn-1=an-1(n≥2,n∈N*),
故bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(an-1+an-2+…+a1)+b1
=
(n-1)[2(n-1)+3+3]
2
+3
=(n-1)(n+3)+3
=n2+2n
=n(n+2)(n≥2,n∈N*).
又因为b1=3满足上式,
∴bn=n(n+2)(n∈N*).
1
bn
=
1
n(n+2)
=
1
2
1
n
-
1
n+2
).
故Tn=
1
2
(1-
1
3
+
1
2
-
1
4
+…+
1
n
-
1
n+2

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2

=
3n2+5n
4(n+1)(n+2)
点评:本题考查数列的求和,考查等差数列的通项公式与求和公式的应用,(2)中求得bn=n(n+2)是关键,考查裂项法求和,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网