题目内容
已知等差数列{an}满足:a3=9,a5+a7=30,{an}的前n项和为Sn.
(1)求an及Sn;
(2)已知数列{bn}的第n项为bn,若bn,
bn+1,an(n∈N*)成等差数列,且b1=3,设数列{
}的前n项和Tn.求数列{
}的前n项和Tn.
(1)求an及Sn;
(2)已知数列{bn}的第n项为bn,若bn,
| 1 |
| 2 |
| 1 |
| bn |
| 1 |
| bn |
分析:(1)设等差数列{an}的公差为d,依题意,可求得d及a1,从而可求an及Sn;
(2)依题意,可求得bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1=n(n+2),利用裂项法可得
=
(
-
),从而可得数列{
}的前n项和Tn.
(2)依题意,可求得bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1=n(n+2),利用裂项法可得
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| bn |
解答:解:(1)设等差数列{an}的公差为d(d≠0),因为a5+a7=30,
又∵a5+a7=2a6,
∴a6=15;
∴d=
=2,又a3=9,
∴an=a3+(n-3)d=9+(n-3)×2=2n+3,
∴a1=5,
∴Sn=
=
=n2+4n.
(2)由(1)知b1=3,
∵bn,
bn+1,an成等差数列,
∴an+bn=2×
bn+1(n∈N*),
∴bn+1-bn=an,
∴bn-bn-1=an-1(n≥2,n∈N*),
故bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(an-1+an-2+…+a1)+b1
=
+3
=(n-1)(n+3)+3
=n2+2n
=n(n+2)(n≥2,n∈N*).
又因为b1=3满足上式,
∴bn=n(n+2)(n∈N*).
∴
=
=
(
-
).
故Tn=
(1-
+
-
+…+
-
)
=
(1+
-
-
)
=
.
又∵a5+a7=2a6,
∴a6=15;
∴d=
| a6-a3 |
| 6-3 |
∴an=a3+(n-3)d=9+(n-3)×2=2n+3,
∴a1=5,
∴Sn=
| n(a1+an) |
| 2 |
| n(5+2n+3) |
| 2 |
(2)由(1)知b1=3,
∵bn,
| 1 |
| 2 |
∴an+bn=2×
| 1 |
| 2 |
∴bn+1-bn=an,
∴bn-bn-1=an-1(n≥2,n∈N*),
故bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(an-1+an-2+…+a1)+b1
=
| (n-1)[2(n-1)+3+3] |
| 2 |
=(n-1)(n+3)+3
=n2+2n
=n(n+2)(n≥2,n∈N*).
又因为b1=3满足上式,
∴bn=n(n+2)(n∈N*).
∴
| 1 |
| bn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
故Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3n2+5n |
| 4(n+1)(n+2) |
点评:本题考查数列的求和,考查等差数列的通项公式与求和公式的应用,(2)中求得bn=n(n+2)是关键,考查裂项法求和,属于难题.
练习册系列答案
相关题目