题目内容
已知函数f(x)=
.
(1)求f(x)的定义域和值域;
(2)若x∈(-
,
),且f(x)=
,求cos2x的值.
(3)若曲线f(x)在点P(x0,f(x0))(-
<x0<
)处的切线平行直线y=
x,求x0的值.
| sin2x+cos2x+1 |
| 2cosx |
(1)求f(x)的定义域和值域;
(2)若x∈(-
| π |
| 4 |
| π |
| 4 |
3
| ||
| 5 |
(3)若曲线f(x)在点P(x0,f(x0))(-
| π |
| 2 |
| π |
| 2 |
| ||
| 2 |
分析:(1)根据分式有意义的条件可得,cosx≠0,求解即可得函数的定义域;利用二倍角公式及辅助角对函数化简可得f(x)=
sin(x+
),结合正弦函数性质可求函数的值域,
(2)由于cos2x=sin(2x+
)=sin[2(x+
)],故需要求sin(x+
),cos(x+
),由f(x)=
代入可求sin(x+
),结合已知条件中 x的范围可求cos(x+
),然后代入可求,
(3)对函数求导可得,f/(x)=cosx-sinx代入已知可得,f/(x0)=cosx0-sinx0=
cos(x0+
)=
从而可得cos(x0+
)=
结合-
<x0+
<
可求.
| 2 |
| π |
| 4 |
(2)由于cos2x=sin(2x+
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
3
| ||
| 5 |
| π |
| 4 |
| π |
| 4 |
(3)对函数求导可得,f/(x)=cosx-sinx代入已知可得,f/(x0)=cosx0-sinx0=
| 2 |
| π |
| 4 |
| ||
| 2 |
从而可得cos(x0+
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
解答:解(1)f(x)=
=sinx+cosx=
sin(x+
)(2分)
由2cosx≠0,得x≠kπ+
(k∈Z),
∴x+
≠kπ+
(k∈Z)(4分)
则f(x)的值域为{y|-
≤y≤
}(6分)
(2)∵f(x)=
,∴
sin(x+
)=
.
∴sin(x+
)=
(7分)
∵-
<x<
,∴0<x+
<
∴cos(x+
)=
(8分)
∴cos2x=sin(2x+
)=2sin(x+
)cos(x+
)=
(10分)
(3)f/(x)=cosx-sinx
由题意得f/(x0)=cosx0-sinx0=
cos(x0+
)=
(12分)
∴cos(x0+
)=
又∵-
<x0+
<
∴x0+
=
,-
∴x0=-
,-
(14分)
| 2sinxcosx+2cos2x-1+1 |
| 2cosx |
| 2 |
| π |
| 4 |
由2cosx≠0,得x≠kπ+
| π |
| 2 |
∴x+
| π |
| 4 |
| 3π |
| 4 |
则f(x)的值域为{y|-
| 2 |
| 2 |
(2)∵f(x)=
3
| ||
| 5 |
| 2 |
| π |
| 4 |
3
| ||
| 5 |
∴sin(x+
| π |
| 4 |
| 3 |
| 5 |
∵-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
∴cos(x+
| π |
| 4 |
| 4 |
| 5 |
∴cos2x=sin(2x+
| π |
| 2 |
| π |
| 4 |
| π |
| 4 |
| 24 |
| 25 |
(3)f/(x)=cosx-sinx
由题意得f/(x0)=cosx0-sinx0=
| 2 |
| π |
| 4 |
| ||
| 2 |
∴cos(x0+
| π |
| 4 |
| ||
| 2 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
∴x0+
| π |
| 4 |
| π |
| 6 |
| π |
| 6 |
| π |
| 12 |
| 5π |
| 12 |
点评:本题主要考查了正弦函数的定义域及值域的求解,辅助角公式的应用,导数的基本运算,及由三角函数值求解角等知识的综合运用.
练习册系列答案
相关题目