题目内容
已知直线l平行于直线4x+3y-7=0,直线l与两坐标轴围成的三角形的周长是15,求直线l的方程.分析:根据两条直线平行,得到要求直线的斜率,设出直线的截距,得到直线与坐标轴的两个交点,根据勾股定理得到三角形的斜边,表示出三角形的周长,得到关于截距的方程,解方程得到截距,写出直线的方程.
解答:解:∵直线l与直线4x+3y-7=0平行,
∴kl=-
.
设直线l的方程为y=-
x+b,
则直线l与x轴的交点为A(
b,0),与y轴的交点为B(0,b),
∴|AB|=
=
|b|
∵直线l与两坐标轴围成的三角形周长是15,
∴|
b|+|b|+|
b|=15.
∴|b|=5,∴b=±5.
∴直线l的方程是y=-
x±5,
即4x+3y±15=0.
∴kl=-
| 4 |
| 3 |
设直线l的方程为y=-
| 4 |
| 3 |
则直线l与x轴的交点为A(
| 3 |
| 4 |
∴|AB|=
(
|
| 5 |
| 4 |
∵直线l与两坐标轴围成的三角形周长是15,
∴|
| 3 |
| 4 |
| 5 |
| 4 |
∴|b|=5,∴b=±5.
∴直线l的方程是y=-
| 4 |
| 3 |
即4x+3y±15=0.
点评:本题考查直线的一般式方程与直线的平行关系,考查直线方程的设法,考查直线与坐标轴的交点,是一个基础题,这种题目可以出现在大型考试中.
练习册系列答案
相关题目