题目内容
3.分析 AB是圆O的直径,可得∠ACB=90°.利用射影定理可得CD2=AD•DB.已知AD=2DB,得DB=1,已知E为AD的中点,可得ED=1.在Rt△CDE中,利用勾股定理可得CE.利用△ACE∽△FBE可得:EA•EB=EC•EF,即可求得EF.
解答 解:在Rt△ABC中,CD⊥AB于D,∴CD2=AD•BD=2BD2=2,
∴DB=1,
∵E为AD的中点,
∴AE=ED=1,
∴$CE=BC=\sqrt{B{D^2}+C{D^2}}=\sqrt{3}$,
又△ACE∽△FBE,∴$\frac{AE}{EF}=\frac{CE}{BE}⇒EF=\frac{AE×BE}{CE}=\frac{{2\sqrt{3}}}{3}$.
故答案为:$\frac{{2\sqrt{3}}}{3}$.
点评 熟练掌握圆的性质、射影定理、勾股定理、相交弦定理是解题的关键.
练习册系列答案
相关题目
18.某公司对员工进行身体素质综合素质,测试成绩分为优秀、良好、合格三个等级,测试结果如下表:(单位:人)
按优秀、良好、合格三个等级分层,从中抽取50人,成绩为优秀的有30人.
(1)求a的值;
(2)若用分层抽样的方法,在合格的员工中按男女抽取一个容量为5的样本,从中任选2人,求抽取两人刚好是一男一女的概率.
| 优秀 | 良好 | 合格 | |
| 男 | 180 | 70 | 20 |
| 女 | 120 | a | 30 |
(1)求a的值;
(2)若用分层抽样的方法,在合格的员工中按男女抽取一个容量为5的样本,从中任选2人,求抽取两人刚好是一男一女的概率.