题目内容

已知函数f(x)=lg(ax2+2ax+1)的定义域为R,求实数a的取值范围.
分析:函数f(x)=lg(ax2+2ax+1)的定义域为R,则真数恒大于0,然后对a分类讨论进行求解,当a=0时满足题意,当a≠0时,利用二次函数的性质解题即可.
解答:解:∵函数f(x)=lg(ax2+2ax+1)的定义域为R,
∴说明对任意的实数x,都有ax2+2ax+1>0成立,
当a=0时,1>0显然成立,
当a≠0时,需要
a>0
△=(2a)2-4×a×1<0
,解得0<a<1.
综上,函数f(x)=lg(ax2+2ax+1)的定义域为R的实数a的取值范围是[0,1).
点评:本题考查了函数的定义域及其求法,考查了分类讨论的数学思想方法和运算求解的能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网