题目内容
集合M={x|x3-4x=0},则M的子集个数为
2
3
4
8
设M是由满足下列两个条件的函数f(x)构成的集合:
①议程f(x)-x=0有实根;②函数f(x)的导数(x)满足0<(x)<1.
(Ⅰ)若,判断方程f(x)-x=0的根的个数;
(Ⅱ)判断(Ⅰ)中的函数f(x)是否为集合M的元素;
(Ⅲ)对于M中的任意函数f(x),设x1是方程f(x)-x=0的实根,求证:对于f(x)定义域中任意的x2,x3,当|x2-x1|<1,且|x3-x1|<1时,有|f(x3)-f(x2)|<2.
设集合M是满足下列条件的函数f(x)的集合:
①f(x)的定义域为R;
②存在a<b,使f(x)在(-∞,a),(b,+∞)上分别单调递增,在(a,b)上单调递减.
(Ⅰ)设f1(x)=x·|x-2|,f2(x)=x3-3x2+3x,判断f1(x),f2(x)是否在集合M中,并说明理由;
(Ⅱ)求证:对任意的实数t,f(x)=都在集合M中;
(Ⅲ)是否存在可导函数f(x),使得f(x)与g(x)=(x)-x都在集合M中,并且有相同的单调区间?请说明理由.
设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数(x)满足0<(x)<1.”
(Ⅰ)判断函数f(x)=+是否是集合M中的元素,并说明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意
[m,n]D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)(x0)成立.试用这一性质证明:方程f(x)-x=0只有一个实数根;
(Ⅲ)对于M中的函数f(x),设x1是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2.