题目内容
【题目】已知抛物线Ω:x2=2py(p>0),过点(0,2p)的直线与抛物线Ω交于A、B两点,AB的中点为M,若点M到直线y=2x的最小距离为
,则p=( )
A.![]()
B.1
C.![]()
D.2
【答案】A
【解析】解:由题意可知,设过点(0,2p)的直线方程为y=kx+2p,且与抛物线的交点A(x1,y1),(x2,y2),
由
,消去y得x2﹣2pkx﹣4p2=0,
∴x1+x2=2pk,
∴
(x1+x2)=pk,
∴y1+y2=k(x1+x2)+4p=2pk2+4p,
∴
(y1+y2)=pk2+2p,
∴A,B的中点坐标为(pk,pk2+2p),
∴点M到直线y=2x的距离为:
=
,
∴即k=0时,点M到直线的距离最小,此时p=
,
所以答案是:A.
练习册系列答案
相关题目
【题目】随着雾霾日益严重,很多地区都实行了“限行”政策,现从某地区居民中,随机抽取了300名居民了解他们对这一政策的态度,绘成如图所示的2×2列联表:
反对 | 支持 | 合计 | |
男性 | 70 | 60 | |
女性 | 50 | 120 | |
合计 |
(1)试问有没有99%的把握认为对“限行”政策的态度与性别有关?
(2)用样本估计总体,把频率作为概率,若从该地区所有的居民(人数很多)中随机抽取3人,用ξ表示所选3人中反对的人数,试写出ξ的分布列,并求出ξ的数学期望.
K2=
,其中n=a+b+c+d独立性检验临界表:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |