题目内容
设数列{an}满足a2=
,且对任意的n∈N*,满足an+2-an≤3n,an+4-an≥10×3n,则a2014=
.
| 1 |
| 8 |
| 91007-8 |
| 8 |
| 91007-8 |
| 8 |
分析:由an+2-an≤3n,可得a2n=(a2n-a2n-2)+(a2n-2-a2n-4)+…+(a4-a2)+a2≤32(n-1)+32(n-2)+…+32+
,同理由an+4-an≥10×3n,可得a4n+2=(a4n+2-a4n-2)+(a4n-2-a4n-6)+…+(a6-a2)≥10×34n-2+10×34n-6+…+10×32+
,利用“累加求和”和等比数列的前n项和公式即可得出.
| 1 |
| 8 |
| 1 |
| 8 |
解答:解:由an+2-an≤3n,可得a2n=(a2n-a2n-2)+(a2n-2-a2n-4)+…+(a4-a2)+a2≤32(n-1)+32(n-2)+…+32+
=
+
=
.
∴a2014=a2×1007≤
.①
由an+4-an≥10×3n,可得a4n+2=(a4n+2-a4n-2)+(a4n-2-a4n-6)+…+(a6-a2)≥10×34n-2+10×34n-6+…+10×32+
=10×
+
=
+
.
∴a2014=a4×503+2≥
,②
由①②可得:a2014=
.
故答案为
.
| 1 |
| 8 |
| 9(9n-1-1) |
| 9-1 |
| 1 |
| 8 |
| 9n-8 |
| 8 |
∴a2014=a2×1007≤
| 91007-8 |
| 8 |
由an+4-an≥10×3n,可得a4n+2=(a4n+2-a4n-2)+(a4n-2-a4n-6)+…+(a6-a2)≥10×34n-2+10×34n-6+…+10×32+
| 1 |
| 8 |
| 32[(34)n-1] |
| 34-1 |
| 1 |
| 8 |
| 9(92n-1) |
| 8 |
| 1 |
| 8 |
∴a2014=a4×503+2≥
| 91007-1 |
| 8 |
由①②可得:a2014=
| 91007-8 |
| 8 |
故答案为
| 91007-8 |
| 8 |
点评:通过变形利用“夹逼法”找到a2014满足的条件及熟练掌握“累加求和”和等比数列的前n项和公式是解题的关键.
练习册系列答案
相关题目
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
)=0若cn=an+
,则数列{cn}的前n项和Sn为( )
| π |
| 2 |
| 1 |
| 2an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|