题目内容
5.在△ABC中,$sinA=\frac{3}{5},\;cosB=\frac{12}{13}$,则cosC=( )| A. | $-\frac{33}{65}$ | B. | $\frac{33}{65}$ | C. | $\frac{63}{65}$ | D. | $-\frac{33}{65}或\frac{63}{65}$ |
分析 将cosC化成-cos(A+B),再利用两角和与差的三角函数公式计算.
解答 解:在△ABC中,sinA=$\frac{3}{5}$<$\frac{\sqrt{2}}{2}$,cosB=$\frac{12}{13}$$>\frac{1}{2}$=cos$\frac{π}{3}$,
∴0<B<$\frac{π}{3}$,则sinB=$\frac{5}{13}$.
若A为钝角,则$\frac{3π}{4}$<A<π,此时A+B>π,不合题意;
∴A为锐角,则cosA=$\frac{4}{5}$,
此时cosC=cos(π-A-B)=-cos(A+B)=-cosAcosB+sinAsinB=-$\frac{4}{5}×\frac{12}{13}$+$\frac{3}{5}×\frac{5}{13}$=$-\frac{33}{65}$.
故选:A.
点评 本题考查两角和与差的三角函数,同角三角函数基本关系式,角的代换,计算能力.本题的关键是充分讨论A的大小范围,确定解的个数,是中档题也是易错题.
练习册系列答案
相关题目
20.若经过A(a,-1),B(2,3)的直线的斜率为2,则a等于( )
| A. | 0 | B. | -1 | C. | 1 | D. | -2 |
13.如表提供了某厂节能降耗技术改造后,在生产A产品过程中记录的产量x(吨)与相应生产能耗y(吨)的几组对应数据:
(1)根据上表提供的数据,求出y关于x的线性回归方程;
(2)试估计产量为10吨时,相应的生产能耗.
参考公式:$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
(2)试估计产量为10吨时,相应的生产能耗.
参考公式:$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.
15.国家实行二孩生育政策后,为研究家庭经济状况对生二胎的影响,某机构在本地区符合二孩生育政策的家庭中,随机抽样进行了调查,得到如下的列联表:
(1)请完成上面的列联表,并判断能否在犯错误的概率不超过1%的前提下认为家庭经济状况与生育二胎有关?
(2)若采用分层抽样的方法从愿意生二胎的家庭中随机抽取4个家庭,则经济状况好和经济状况一般的家庭分别应抽取多少个?
(3)在(2)的条件下,从中随机抽取2个家庭,求2个家庭都是经济状况好的概率.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| 经济状况好 | 经济状况一般 | 合计 | |
| 愿意生二胎 | 50 | 50 | 100 |
| 不愿意生二胎 | 20 | 90 | 110 |
| 合计 | 70 | 140 | 210 |
(2)若采用分层抽样的方法从愿意生二胎的家庭中随机抽取4个家庭,则经济状况好和经济状况一般的家庭分别应抽取多少个?
(3)在(2)的条件下,从中随机抽取2个家庭,求2个家庭都是经济状况好的概率.
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |