题目内容
某高校从参加今年自主招生考试的1000名学生中随机抽取100名学生成绩进行统计,得到如图所示的样本频率分布直方图。若规定60分及以上为合格,则估计这1000名学生中合格人数是 名![]()
| A.400 | B.600 | C.700 | D.800 |
C
解析试题分析:由频率分布直方图知,60分以及以上的概率为(0.03+0.02+0.01+0.01)×10=0.7,所以这1000名学生中合格人数为0.7×1000=700,故选C.由频率分布直方图知,60分以及以上的概率即60分以及以上矩形的面积和,即为(0.03+0.02+0.01+0.01)×10=0.7,所以这1000名学生中合格人数为0.7×1000=700.
考点:频率分布直方图;总体估计
练习册系列答案
相关题目
下列四个命题正确的是 ( )
①线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越小;
②残差平方和越小的模型,拟合的效果越好;
③用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好。
④随机误差e是衡量预报精确度的一个量,它满足E(e)=0
| A.①③ | B.②④ | C.①④ | D.②③ |
右图是2010年青年歌手大奖赛中,七位评委为甲、乙两
名选手打出的分数的茎叶图(其中m为数字0~9中的
一个),去掉一个最高分和一个最低分后,甲、乙两名选
手得分的平均数分别为a1,a2,则一定有
| A.a1>a2 | B.a2>a1 |
| C.a1=a2 | D.a1,a2的大小与m的值有关 |