题目内容
已知数列{an}是等差数列,O为坐标原点,平面内三点A、B、C共线,且
=a1006
+a1007
,则数列{an}的前2012项的和S2012=
| OA |
| OB |
| OC |
1006
1006
.分析:由已知得a1006+a1007=1,而S2012=1006(a1+a2012)=1006(a1006+a1007),代值即可.
解答:解:∵平面内三点A、B、C共线,且
=a1006
+a1007
,
∴a1006+a1007=1
故S2012=
=1006(a1+a2012)
=1006(a1006+a1007)=1006
故答案为:1006
| OA |
| OB |
| OC |
∴a1006+a1007=1
故S2012=
| 2012(a1+a2012) |
| 2 |
=1006(a1006+a1007)=1006
故答案为:1006
点评:本题为等差数列的性质和向量知识的结合,得出a1006+a1007=1是解决问题的关键,属基础题.
练习册系列答案
相关题目