题目内容
在三角形ABC中,∠A,∠B,∠C所对的边长分别为a,b,c,其外接圆的半径R=
,则(a2+b2+c2)(
+
+
)的最小值为
______.
5
| ||
| 36 |
| 1 |
| sin2A |
| 1 |
| sin2B |
| 1 |
| sin2C |
由正弦定理可知
=
=
=2R
∴sinA=
,sinB=
,sinC=
∴(a2+b2+c2)(
+
+
)
=4R2(a2+b2+c2)(
+
+
)
=4R2(3+
+
+
+
+
+
)≥4R2(3+2+2+2)=
(当且仅当a=b=c时等号成立).
故答案为:
| a |
| sinA |
| b |
| sinB |
| c |
| sinC |
∴sinA=
| a |
| 2R |
| b |
| 2R |
| c |
| 2R |
∴(a2+b2+c2)(
| 1 |
| sin2A |
| 1 |
| sin2B |
| 1 |
| sin2C |
=4R2(a2+b2+c2)(
| 1 |
| a2 |
| 1 |
| b2 |
| 1 |
| c2 |
=4R2(3+
| a2 |
| b2 |
| b2 |
| a2 |
| a2 |
| c2 |
| c2 |
| a2 |
| c2 |
| b2 |
| b2 |
| c2 |
| 25 |
| 6 |
故答案为:
| 25 |
| 6 |
练习册系列答案
相关题目
在三角形ABC中,A=120°,AB=5,BC=7,则
的值为( )
| sinB |
| sinC |
A、
| ||
B、
| ||
C、
| ||
D、
|