题目内容
已知函数f(x)=1-2-x(x∈R).(1)求y=f(x)的反函数y=f-1(x);
(2)求不等式2log2(x+1)+f-1(x)≥0的解集.
【答案】分析:(1)该题考查指数式和对数式的互化及反函数的求法,利用反函数的定义结合指对互化即可获得.
(2)将反函数的解析式代入不等式,然后根据对数运算法则进行化简变形,求出不等式的解集,注意定义域优先的原则.
解答:解:(1)解:由y=1-2-x得-x=log2(1-y),即:x=-log2(1-y),
又∵原函数的值域是{y|y<1},
∴函数y=1-2-x(x∈R)的反函数是y=-log2(1-x),(x<-1).
∴y=f-1(x)=-log2(1-x),(x<-1).…(6分)
(2)由2log2(x+1)-log2(1-x)≥0得(x+1)2≥1-x,(10分)
解得x≥0或x≤-3 …(12分)
又因为定义域为{x|-1<x<1},所以不等式的解集是{x|0≤x<1}(14分)
点评:本题主要考查了反函数的求解,以及对数不等式的解法,解题的关键就是定义域的求解,属于基础题.
(2)将反函数的解析式代入不等式,然后根据对数运算法则进行化简变形,求出不等式的解集,注意定义域优先的原则.
解答:解:(1)解:由y=1-2-x得-x=log2(1-y),即:x=-log2(1-y),
又∵原函数的值域是{y|y<1},
∴函数y=1-2-x(x∈R)的反函数是y=-log2(1-x),(x<-1).
∴y=f-1(x)=-log2(1-x),(x<-1).…(6分)
(2)由2log2(x+1)-log2(1-x)≥0得(x+1)2≥1-x,(10分)
解得x≥0或x≤-3 …(12分)
又因为定义域为{x|-1<x<1},所以不等式的解集是{x|0≤x<1}(14分)
点评:本题主要考查了反函数的求解,以及对数不等式的解法,解题的关键就是定义域的求解,属于基础题.
练习册系列答案
相关题目
已知函数f(x)=
,g(x)=1+
,若f(x)>g(x),则实数x的取值范围是( )
| 1 |
| |x| |
| x+|x| |
| 2 |
| A、(-∞,-1)∪(0,1) | ||||
B、(-∞,-1)∪(0,
| ||||
C、(-1,0)∪(
| ||||
D、(-1,0)∪(0,
|