题目内容
已知二次函数f(x)=ax2+bx+c,a,b,c为实数,且当|x|≤1时,恒有|f(x)|≤1;
(I) 证明:|c|≤1;
(II)证明:|a|≤2;
(III)若g(x)=λax+b(λ>1),求证:当|x|≤1时,|g(x)|≤2λ.
(I) 证明:|c|≤1;
(II)证明:|a|≤2;
(III)若g(x)=λax+b(λ>1),求证:当|x|≤1时,|g(x)|≤2λ.
分析:(I)当|x|≤1时,恒有|f(x)|≤1.由此能够证明c≤1.
(Ⅱ)由f(0)=c,f(1)=a+b+c,f(-1)=a-b+c,知2a=f(1)+f(-1)-2f(0).又由|x|≤1时,|f(x)|≤1,|f(1)|≤1,|f(-1)|≤1,|f(0)|≤1.由此能够证明|a|≤2.
(Ⅲ)由f(0)=c,f(1)=a+b+c,f(-1)=a-b+c.由
得
.由一次函数的单调性能够证明|g(x)|≤2λ.
(Ⅱ)由f(0)=c,f(1)=a+b+c,f(-1)=a-b+c,知2a=f(1)+f(-1)-2f(0).又由|x|≤1时,|f(x)|≤1,|f(1)|≤1,|f(-1)|≤1,|f(0)|≤1.由此能够证明|a|≤2.
(Ⅲ)由f(0)=c,f(1)=a+b+c,f(-1)=a-b+c.由
|
|
解答:解:(I)∵当|x|≤1时,
恒有|f(x)|≤1;
∴|f(0)|≤1,
∴c≤1
(II)∵f(0)=c,f(1)=a+b+c,f(-1)=a-b+c,
∴2a=f(1)+f(-1)-2f(0)
又∵|x|≤1时,|f(x)|≤1,
∴|f(1)|≤1,|f(-1)|≤1,
|f(0)|≤1,
∴|2a|=|f(1)+f(-1)-2f(0)|≤|f(1)|+|f(-1)|+2|f(0)|≤4,
∴|a|≤2.
(III)∵f(0)=c,f(1)=a+b+c,f(-1)=a-b+c
由
得
∴g(1)=λa+b=λ•
[f(1)+f(-1)]-λf(0)+
[f(1)-f(-1)]=
f(1)+
f(-1)-λf(0)g(-1)=-λa+b=-λ•
[f(1)+f(-1)]+λf(0)+
[f(1)-f(-1)]
=
f(1)-
f(-1)+λf(0),
∵λ≥1,|f(1)|≤1,|f(-1)|≤1,|f(0)|≤1,
∴|g(1)|=|
f(1)+
f(-1)-λf(0)|≤
+
+λ=2λ,
∴|g(-1)|=|
f(1)-
f(-1)+λf(0)|≤
+
+λ=2λ.
恒有|f(x)|≤1;
∴|f(0)|≤1,
∴c≤1
(II)∵f(0)=c,f(1)=a+b+c,f(-1)=a-b+c,
∴2a=f(1)+f(-1)-2f(0)
又∵|x|≤1时,|f(x)|≤1,
∴|f(1)|≤1,|f(-1)|≤1,
|f(0)|≤1,
∴|2a|=|f(1)+f(-1)-2f(0)|≤|f(1)|+|f(-1)|+2|f(0)|≤4,
∴|a|≤2.
(III)∵f(0)=c,f(1)=a+b+c,f(-1)=a-b+c
由
|
|
∴g(1)=λa+b=λ•
| 1 |
| 2 |
| 1 |
| 2 |
| λ+1 |
| 2 |
| λ-1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1-λ |
| 2 |
| 1+λ |
| 2 |
∵λ≥1,|f(1)|≤1,|f(-1)|≤1,|f(0)|≤1,
∴|g(1)|=|
| λ+1 |
| 2 |
| λ-1 |
| 2 |
| λ+1 |
| 2 |
| λ-1 |
| 2 |
∴|g(-1)|=|
| λ-1 |
| 2 |
| λ+1 |
| 2 |
| λ-1 |
| 2 |
| λ+1 |
| 2 |
点评:本题考查二次函数的性质和应用,解题时要认真审题,仔细解答,注意合理地运用不等式的性质.
练习册系列答案
相关题目