题目内容

已知二次函数f(x)=ax2+bx+c,a,b,c为实数,且当|x|≤1时,恒有|f(x)|≤1;
(I) 证明:|c|≤1;
(II)证明:|a|≤2;
(III)若g(x)=λax+b(λ>1),求证:当|x|≤1时,|g(x)|≤2λ.
分析:(I)当|x|≤1时,恒有|f(x)|≤1.由此能够证明c≤1.
(Ⅱ)由f(0)=c,f(1)=a+b+c,f(-1)=a-b+c,知2a=f(1)+f(-1)-2f(0).又由|x|≤1时,|f(x)|≤1,|f(1)|≤1,|f(-1)|≤1,|f(0)|≤1.由此能够证明|a|≤2.
(Ⅲ)由f(0)=c,f(1)=a+b+c,f(-1)=a-b+c.由
f(0)=c
f(1)=a+b+c
f(-1)=a-b+c
a=
1
2
[f(1)+f(-1)]-f(0)
b=
1
2
[f(1)-f(-1)]
c=f(0)
.由一次函数的单调性能够证明|g(x)|≤2λ.
解答:解:(I)∵当|x|≤1时,
恒有|f(x)|≤1;
∴|f(0)|≤1,
∴c≤1
(II)∵f(0)=c,f(1)=a+b+c,f(-1)=a-b+c,
∴2a=f(1)+f(-1)-2f(0)
又∵|x|≤1时,|f(x)|≤1,
∴|f(1)|≤1,|f(-1)|≤1,
|f(0)|≤1,
∴|2a|=|f(1)+f(-1)-2f(0)|≤|f(1)|+|f(-1)|+2|f(0)|≤4,
∴|a|≤2.
(III)∵f(0)=c,f(1)=a+b+c,f(-1)=a-b+c
f(0)=c
f(1)=a+b+c
f(-1)=a-b+c
a=
1
2
[f(1)+f(-1)]-f(0)
b=
1
2
[f(1)-f(-1)]
c=f(0)

g(1)=λa+b=λ•
1
2
[f(1)+f(-1)]-λf(0)+
1
2
[f(1)-f(-1)]
=
λ+1
2
f(1)+
λ-1
2
f(-1)-λf(0)
g(-1)=-λa+b=-λ•
1
2
[f(1)+f(-1)]+λf(0)+
1
2
[f(1)-f(-1)]

=
1-λ
2
f(1)-
1+λ
2
f(-1)+λf(0)

∵λ≥1,|f(1)|≤1,|f(-1)|≤1,|f(0)|≤1,
|g(1)|=|
λ+1
2
f(1)+
λ-1
2
f(-1)-λf(0)|
λ+1
2
+
λ-1
2
+λ=2λ

|g(-1)|=|
λ-1
2
f(1)-
λ+1
2
f(-1)+λf(0)|
λ-1
2
+
λ+1
2
+λ=2λ
点评:本题考查二次函数的性质和应用,解题时要认真审题,仔细解答,注意合理地运用不等式的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网