题目内容
若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时f(x)=x,则函数y=f(x)-log4|x|的零点个数为
[ ]
A.3
B.4
C.5
D.6
B.4
C.5
D.6
D
练习册系列答案
相关题目
若定义在R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=ex,则g(x)=( )
| A、ex-e-x | ||
B、
| ||
C、
| ||
D、
|
若定义在R上的偶函数f(x)在(-∞,0]上是增函数,且f(-
)=2,那么不等式f(sin(2x-
))<2在[-
,
]上的解集为( )
| 1 |
| 2 |
| π |
| 3 |
| π |
| 2 |
| π |
| 2 |
A、[-
| ||||||||||||
B、[-
| ||||||||||||
C、[-
| ||||||||||||
D、[-
|
若定义在R上的偶函数f(x)满足f(x+1)=-f(x),且在区间[0,1]上单调递减,则( )
A、f(2)<f(
| ||
B、f(1)<f(2)<f(
| ||
C、f(
| ||
D、f(1)<f(
|