题目内容
设椭圆C:| x2 |
| a2 |
| y2 |
| b2 |
| 2 |
(1)求椭圆C的方程;
(2)设椭圆C经过伸缩变换
|
| OA |
| OB |
| 2 |
| 3 |
| 3 |
| 4 |
分析:(1)根据直线与x轴交点求得c,进而根据椭圆的定义求得|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,根据△F1PQ的周长求得a,则b可求得,进而求得椭圆的方程.
(2)根据题意可求得曲线C'的方程,整理得圆的方程,根据直线l与圆相切求得原点到直线的距离进而求得k和m的关系式,与椭圆方程联立设A(x1,y1),B(x2,y2)根据判别式求得k的范围,依据韦达定理表示出x1+x2和x1x2,进而根据直线方程表示出y1y2,进而根据m2=1+k2求得x1+x2和x1x2关于k的表达式,进而求得
•
的表达式,根据λ的范围确定k的范围,根据弦长公式表示出|AB|,根据k的范围确定|AB|的范围,进而利用|AB|表示出△OAB面积求得△OAB面积的取值范围.
(2)根据题意可求得曲线C'的方程,整理得圆的方程,根据直线l与圆相切求得原点到直线的距离进而求得k和m的关系式,与椭圆方程联立设A(x1,y1),B(x2,y2)根据判别式求得k的范围,依据韦达定理表示出x1+x2和x1x2,进而根据直线方程表示出y1y2,进而根据m2=1+k2求得x1+x2和x1x2关于k的表达式,进而求得
| OA |
| OB |
解答:解:(1)依题意y=x-1与x轴交于点F2(1,0)
即c=1.
又|PF1|+|PF2|=2a,|QF1|+|QF2|=2a
所以|PF1|+|PQ|+|QF1|=|PF1|+|PF2|+|QF2|+|QF1|=4a∴4a=4
,∴a=
,∴b2=a2-c2=1
所以椭圆C的方程为
+y2=1.
(2)依题意曲线C'的方程为
+y′2=1
即圆x'2+y'2=1.
因为直线l:y=kx+m与曲线C'相切,
所以
=1,
即m2=k2+1.
由
得(1+2k2)x2+4kmx+2m2-2=0
设A(x1,y1),B(x2,y2)
所以△>0,即k2>0,
所以k≠0.
所以x1+x2=-
,x1x2=
.
所以y1y2=(kx1+m)(kx2+m)=k2x1x2+mk(x1+x2)+m2=
又m2=1+k2
所以x1x2=
,y1y2=
.
所以
•
=x1x2+y1y2=
=λ
又
≤λ≤
所以
≤
≤
,
所以
≤k2≤1.
又|AB|=
•
=2
设u=k4+k2
因为
≤k2≤1,所以u∈[
,2]|AB=2
=2
在[
,2]上为递增函数,
所以
≤|AB|≤
.
又O到AB的距离为1,
所以S△OAB=
|AB|•1=
|AB|∈[
,
].
即△OAB的面积的取值范围为[
,
].
即c=1.
又|PF1|+|PF2|=2a,|QF1|+|QF2|=2a
所以|PF1|+|PQ|+|QF1|=|PF1|+|PF2|+|QF2|+|QF1|=4a∴4a=4
| 2 |
| 2 |
所以椭圆C的方程为
| x2 |
| 2 |
(2)依题意曲线C'的方程为
(
| ||
| 2 |
即圆x'2+y'2=1.
因为直线l:y=kx+m与曲线C'相切,
所以
| |m| | ||
|
即m2=k2+1.
由
|
得(1+2k2)x2+4kmx+2m2-2=0
设A(x1,y1),B(x2,y2)
所以△>0,即k2>0,
所以k≠0.
所以x1+x2=-
| 4km |
| 1+2k2 |
| 2m2-2 |
| 1+2k2 |
所以y1y2=(kx1+m)(kx2+m)=k2x1x2+mk(x1+x2)+m2=
| m2-2k2 |
| 1+2k2 |
又m2=1+k2
所以x1x2=
| 2k2 |
| 1+2k2 |
| 1+k2 |
| 1+2k2 |
所以
| OA |
| OB |
| 1+k2 |
| 1+2k2 |
又
| 2 |
| 3 |
| 3 |
| 4 |
所以
| 2 |
| 3 |
| 1+k2 |
| 1+2k2 |
| 3 |
| 4 |
所以
| 1 |
| 2 |
又|AB|=
| 1+k2 |
| (x1+x2)2-4x1x2 |
|
设u=k4+k2
因为
| 1 |
| 2 |
| 3 |
| 4 |
|
|
在[
| 3 |
| 4 |
所以
| ||
| 2 |
| 4 |
| 3 |
又O到AB的距离为1,
所以S△OAB=
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 4 |
| 2 |
| 3 |
即△OAB的面积的取值范围为[
| ||
| 4 |
| 2 |
| 3 |
点评:本题主要考查了圆锥曲线的综合性问题,考查了直线与圆锥曲线的关系.考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关题目