题目内容
定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈ [3,4]时,f(x)=x-2.则 ( )
A.f(sin
)<f(cos
) B.f(sin
)>f(cos
) C.f(sin1)<f(cos1) D.f(sin
)<f(cos
)
[考场错解] A 由f(x)=f(x+2)知T=2为f(x)的一个周期.设x∈[-1,0]知x+4∈[3,4]
∴f(x)=f(x+4)=x+4-2=x+2.∴f(x)在[-1,0]上是增函数又f(x)为偶函数.∴f(x)=f(-x)
∴x∈[0,1]时,f(x)=x+2,即f(x)在[0,1]上也是增函数.又∵sin
<cos![]()
f(sin
)<f(cos
).
[专家把脉] 上面解答错在由f(x)=f(-x)得f(x)=x+2这一步上,导致错误的原因主要是对偶函数图像不熟悉.
[对症下药] C 由f(x)=f(x+2)知T=2为f(x)的一个周期,设x∈[-1,0],知x+4∈[3,4]
∴f(x)=f(x+4)=x+4-2=x+2. ∴f(x)在[-1,0]上是增函数.又∵f(x)为偶函数,∴f(x)的图像关于y轴对称. ∴f(x)在[0,1]上是减函数.
A:sin
<cos![]()
f(sin
)>f(cos
) B:sin
>cos![]()
f(sin
)>f(cos
).
C:sin1>cos1
f(sin1)<f(cos1).故正确答案C.
练习册系列答案
相关题目