题目内容

已知函数f(x)=2sinxcosx+sin2x-cos2x.(1)求f(x)递增区间.(2)求f(x)当x∈[0,
π2
]
时的值域.
分析:(1)利用倍角公式对函数解析式进行化简,再由正弦函数的单调性求出,函数的递增区间;
(2)由x∈[0,
π
2
]
求出2x-
π
4
的范围,进而求出正弦函数值的范围,再由解析式求出函数值域.
解答:解:(1)由题意知,f(x)=2sinxcosx+sin2x-cos2x,
∴f(x)=sin2x-cos2x=
2
sin(2x-
π
4
)

2kπ-
π
2
≤2x-
π
4
≤2kπ+
π
2
得,kπ-
π
8
≤x≤kπ+
8

∴函数的递增区间为[kπ-
π
8
,kπ+
8
]
(k∈Z)

(2)∵x∈[0,
π
2
]
,∴2x-
π
4
∈[-
π
4
4
]

2
sin(-
π
4
)≤y≤
2
sin
π
2

-1≤y≤
2

∴函数的值域为[-1,
2
]
点评:本题的考点是正弦函数的单调性和求定区间上的值域,需要对解析式进行适当的化简成正弦型的函数,再利用整体思想求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网