题目内容
已知圆C:x2+y2=4,点D(4,0),坐标原点为O.圆C上任意一点A在X轴上的影射为点B已知向量| OQ |
| OA |
| OB |
(1)求动点Q的轨迹E的方程
(2)当t=
| ||
| 2 |
分析:(1)设设Q(x,y),A(x0,y0)B(x0,0)代入
=t
+(1-t)
得到x0= x,y0=
所以动点Q的轨迹E的方程为x2+
=4.
(2)设直线PD的方程为y=k(x-4).代入①,并整理得(3+4k2)x2-32k2x+64k2-12=0设点P(x1,y1),R(x2,y2),则Q(x1,-y1),直线RQ的方程为
y-y2=
(x-x2)令y=0将y1=k(x2-4),y2=k(x2-4),x1+x2=
,x1x2=
代入整理得x=1,即直线QR过定点(1,0).验证当k=0时也成立.
| OQ |
| OA |
| OB |
| y |
| t |
| y2 |
| t2 |
(2)设直线PD的方程为y=k(x-4).代入①,并整理得(3+4k2)x2-32k2x+64k2-12=0设点P(x1,y1),R(x2,y2),则Q(x1,-y1),直线RQ的方程为
y-y2=
| y2+y1 |
| x2-x2 |
| 32k2 |
| 3+4k2 |
| 64k2-12 |
| 3+4k2 |
解答:解:(1)设Q(x,y),A(x0,y0),则B(x0,0).
∵
=t
+(1-t)
∴(x,y)=t(x0,y0)+(1-t)(x0,0)
∴x0= x,y0=
∵
+
=4,x2+
=4
即轨迹E的方程为x2+
=4
(2)当t=
时,轨迹E为椭圆,方程为
+
=1…①
设直线PD的方程为y=k(x-4).代入①,并整理得
(3+4k2)x2-32k2x+64k2-12=0…②
由题意得,必有△>0,故方程②有两个不等实根.
设点P(x1,y1),R(x2,y2),则Q(x1,-y1)
由②知,x1+x2=
,x1x2=
直线RQ的方程为y-y2=
(x-x2)
当k≠0时,令y=0,得x=x2-
,将y1=k(x2-4),y2=k(x2-4)代入整理得
x=
…③
再将x1+x2=
,x1x2=
代入③计算得,x=1即直线QR过定点(1,0)
当k=0时,y1=y2=0,直线QR过定点(1,0)
综上可得,直线QR与x轴交于定点,该定点的坐标为(1,0).
∵
| OQ |
| OA |
| OB |
∴(x,y)=t(x0,y0)+(1-t)(x0,0)
∴x0= x,y0=
| y |
| t |
∵
| x | 2 0 |
| y | 2 0 |
| y2 |
| t2 |
即轨迹E的方程为x2+
| y2 |
| t2 |
(2)当t=
| ||
| 2 |
| x2 |
| 4 |
| y2 |
| 3 |
设直线PD的方程为y=k(x-4).代入①,并整理得
(3+4k2)x2-32k2x+64k2-12=0…②
由题意得,必有△>0,故方程②有两个不等实根.
设点P(x1,y1),R(x2,y2),则Q(x1,-y1)
由②知,x1+x2=
| 32k2 |
| 3+4k2 |
| 64k2-12 |
| 3+4k2 |
直线RQ的方程为y-y2=
| y2+y1 |
| x2-x1 |
当k≠0时,令y=0,得x=x2-
| y2( x2-x1) |
| y2+y1 |
x=
| 2x1x2-4(x1+x2) |
| x1+x2-8 |
再将x1+x2=
| 32k2 |
| 3+4k2 |
| 64k2-12 |
| 3+4k2 |
当k=0时,y1=y2=0,直线QR过定点(1,0)
综上可得,直线QR与x轴交于定点,该定点的坐标为(1,0).
点评:本题考查求曲线方程的方法中相关点代入法以及直线与椭圆的位置关系,直线的方程和定点问题,在高考中定值也是考查的重点.
练习册系列答案
相关题目