题目内容

已知椭圆数学公式+数学公式=1(a>b>0),M,N是椭圆长轴的两个端点,P是椭圆上除了长轴端点外的任意一点,且直线PM、PN的斜率分别为k1、k2,若k1•k2=-数学公式,则椭圆的离心率为.


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:先求出M、N的坐标,设点P的坐标,则点P的坐标满足椭圆的方程,计算直线PM的斜率与直线PN的斜率之积等于定值,代入解得a和b的关系,进而求得a和c的关系,则椭圆的离心率可得.
解答:由题意得:M(-a,0)、N(a,0),设点P的坐标(x,y),
则有,即 y2=b2(1-),
直线PM的斜率与直线PN的斜率之积等于
×==
=-,?a2=2b2
∴c2=a2-b2=a2
∴e==
故选B.
点评:本题考查椭圆的简单性质的应用,本题的关键是利用直线PM的斜率与直线PN的斜率之积等于定值得出a,b的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网