题目内容
△OAB中,|
|=10
(1)点C为直线AB上一点,且
=t
,(t∈R),试用
、
表示
.
(2)点C1、C2,…,C9依次为线段AB的10等分点,且
+
+…+
=λ(
+
),求实数λ的值.
(3)条件同(2),又点P为线段AB上一个动点,定义关于点P的函数f(P)=|
-
|+2|
-
|+3|
-
|+…+9|
-
|+10|
-
|,求f(P)的最小值.
| AB |
(1)点C为直线AB上一点,且
| AC |
| AB |
| OA |
| OB |
| OC |
(2)点C1、C2,…,C9依次为线段AB的10等分点,且
| OC1 |
| OC2 |
| OC9 |
| OA |
| OB |
(3)条件同(2),又点P为线段AB上一个动点,定义关于点P的函数f(P)=|
| OP |
| OC1 |
| OP |
| OC2 |
| OP |
| OC3 |
| OP |
| OC9 |
| OP |
| OB |
分析:(1)根据向量减法的三角形法则,可得
=
-
,再由
=t
,
=
+
可得答案;
(2)根据向量定比分点公式,当C将AB分为长度比为a:b的两段时,
=
+
,逐一求出各分点对应的向量累加可得答案.
(3)设
=x
,则f(P)=|
-
|+2|
-
|+3|
-
|+…+9|
-
|+10|
-
|=|x-1|+2|x-2|+3|x-3|+…+9|x-9|+10|x-10|利用零点分段法化简函数的解析式,并结合一次函数的图象和性质分析函数的单调性,可得函数的最小值.
| AB |
| OB |
| OA |
| AC |
| AB |
| OC |
| OA |
| AC |
(2)根据向量定比分点公式,当C将AB分为长度比为a:b的两段时,
| OC |
| b |
| a+b |
| OA |
| a |
| a+b |
| OB |
(3)设
| AP |
| AC1 |
| OP |
| OC1 |
| OP |
| OC2 |
| OP |
| OC3 |
| OP |
| OC9 |
| OP |
| OB |
解答:解:(1)在△OAB中
=
-
∴
=t
=t
-t
∴
=
+
=t
+(1-t)
(2)∵C1、C2,…,C9依次为线段AB的10等分点,
∴
=
+
;
=
+
;
…
=
+
;
…
=
+
;
∴
+
+…+
=(
+
+…+
)(
+
)=
(
+
)
故λ=
(3)设
=x
,则
f(P)=|
-
|+2|
-
|+3|
-
|+…+9|
-
|+10|
-
|,
=|
|+2|
|+3|
|+…+9|
|+10|
|
=|x-1|+2|x-2|+3|x-3|+…+9|x-9|+10|x-10|
当x∈[k,k+1]时,k∈{0,1,2,3,4,5,6,7,8,9}
f(x)=(x-1)+2(x-2)+…+k(x-k)+k(k+1-x)…+10(10-x)
=x+2x+…+kx-(k+1)x-(k+2)x-…-10x-12-22-…-k2+(k+1)2+(k+2)2+…+102
=(k2+k-55)x-[12+22+…+k2-(k+1)2-(k+2)2-…-102]
当k∈{0,1,2,3,4,5,6}时,k2+k-55<0,函数为减函数
当k∈{7,8,9}时,k2+k-55>0,函数为增函数
故当k=7时,f(P)取最小值f(7)=1×6+2×5+3×4+4×3+5×2+6×1+7×0+8×1+9×2+10×3=112
| AB |
| OB |
| OA |
∴
| AC |
| AB |
| OB |
| OA |
∴
| OC |
| OA |
| AC |
| OB |
| OA |
(2)∵C1、C2,…,C9依次为线段AB的10等分点,
∴
| OC1 |
| 9 |
| 10 |
| OA |
| 1 |
| 10 |
| OB |
| OC2 |
| 8 |
| 10 |
| OA |
| 2 |
| 10 |
| OB |
…
| OCn |
| 10-n |
| 10 |
| OA |
| n |
| 10 |
| OB |
…
| OC9 |
| 1 |
| 10 |
| OA |
| 9 |
| 10 |
| OB |
∴
| OC1 |
| OC2 |
| OC9 |
| 1 |
| 10 |
| 2 |
| 10 |
| 9 |
| 10 |
| OA |
| OB |
| 9 |
| 2 |
| OA |
| OB |
故λ=
| 9 |
| 2 |
(3)设
| AP |
| AC1 |
f(P)=|
| OP |
| OC1 |
| OP |
| OC2 |
| OP |
| OC3 |
| OP |
| OC9 |
| OP |
| OB |
=|
| C1P |
| C2P |
| C3P |
| C3P |
| BP |
=|x-1|+2|x-2|+3|x-3|+…+9|x-9|+10|x-10|
当x∈[k,k+1]时,k∈{0,1,2,3,4,5,6,7,8,9}
f(x)=(x-1)+2(x-2)+…+k(x-k)+k(k+1-x)…+10(10-x)
=x+2x+…+kx-(k+1)x-(k+2)x-…-10x-12-22-…-k2+(k+1)2+(k+2)2+…+102
=(k2+k-55)x-[12+22+…+k2-(k+1)2-(k+2)2-…-102]
当k∈{0,1,2,3,4,5,6}时,k2+k-55<0,函数为减函数
当k∈{7,8,9}时,k2+k-55>0,函数为增函数
故当k=7时,f(P)取最小值f(7)=1×6+2×5+3×4+4×3+5×2+6×1+7×0+8×1+9×2+10×3=112
点评:本题考查的知识点是平面向量加法和减法的三角形法则,向量定比分点公式,含绝对值符号的函数,是平面向量的综合应用,难度较大,属于难题.
练习册系列答案
相关题目