题目内容

已知数列{an}满足2an+1=an+an+2(n=1,2,3,…),它的前n项和为Sn,且a3=5,S6=36.
(1)求an
(2)已知等比数列{bn}满足b1+b2=1+a,b4+b5=a3+a4(a≠-1),设数列{an•bn}的前n项和为Tn,求Tn
分析:(1)由2an+1=an+an+2判断出数列{an}是等差数列,将a3=5,S6=36用基本量表示得到关于首项、公差的方程组,求出首项、公差,利用等差数列的通项公式求出an
(2)将b1+b2=1+a,b4+b5=a3+a4两个式子作商求出公比,利用等比数列的通项公式求出通项,由于anbn=(2n-1)an-1.所以利用错位相减的方法求出数列{an•bn}的前n项和为Tn
解答:解:(1)由2an+1=an+an+2得an+2-an+1=an+1-an
则数列{an}是等差数列.                 …(2分)
a1+2d=5
6a1+15d=36.
a1=1
d=2.

因此,an=2n-1.                    …(5分)
(2)设等比数列{bn}的公比为q,
q3=
b4+b5
b1+b2
=
a3+a4
1+a
=a3

∴q=a.
由b1+b2=1+a,得b1(1+a)=1+a.
∵a≠-1,
∴b1=1.
则bn=b1qn-1=an-1,anbn=(2n-1)an-1.   …(7分)
Tn=1+3a+5a2+7a3+…+(2n-1)an-1…①
当a≠1时,aTn=a+3a2+5a3+7a4+…+(2n-1)an…②
由①-②得(1-a)Tn=1+2a+2a2+2a3+…+2an-1-(2n-1)an
=
2(1-an)
1-a
-1-(2n-1)an

Tn=
2(1-an)
(1-a)2
-
1+(2n-1)an
1-a
.       …(10分)
当a=1时,Tn=n2.                 …(12分)
点评:求睡了的前n项和问题,应该先求出数列的通项,然后选择合适的求和方法进行计算.注意若等比数列的公比是字母,要分类讨论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网