题目内容
已知数列{an}的前n项和为Sn=3n,数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)若cn=
,求数列{cn}的前n项和Tn.
(1)求数列{an}和{bn}的通项公式;
(2)若cn=
| an•bn | n |
分析:(1)①当n≥2时,an=Sn-Sn-1.当n=1时,s1=a1=3.即可得出an.
②由数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n∈N*),利用“累加求和”即可得出.
(2)利用“错位相减法”即可得出.
②由数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n∈N*),利用“累加求和”即可得出.
(2)利用“错位相减法”即可得出.
解答:解:(1)①∵Sn=3n,∴当n≥2时,Sn-1=3n-1.
∴an=Sn-Sn-1=3n-3n-1=2•3n-1.
当n=1时,s1=a1=3.
∴an=
.
②∵数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n∈N*),
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(2n-3)+(2n-5)+…+1-1
=
-1
=n2-2n.
(2)当n=1时,c1=
=-3;
当n≥2时,cn=
=2(n-2)×3n-1.
∴cn=
当n≥2时,Tn=-3+2×0×31+2×1×32+2×2×33+…+2×(n-2)×3n-1,
3Tn=-9+0+2×1×33+…+2×(n-3)3n-1+2×(n-2)•3n,
相减得-2Tn=6+2×32+2×33+…+2×3n-1-2(n-2)×3n=2×
-2(n-2)×3n=3n-3-2(n-2)×3n,
∴Tn=
.
当n=1时,上式也成立.
∴Tn=
.
∴an=Sn-Sn-1=3n-3n-1=2•3n-1.
当n=1时,s1=a1=3.
∴an=
|
②∵数列{bn}满足b1=-1,bn+1=bn+(2n-1)(n∈N*),
∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=(2n-3)+(2n-5)+…+1-1
=
| (n-1)(2n-3+1) |
| 2 |
=n2-2n.
(2)当n=1时,c1=
| 3×(-1) |
| 1 |
当n≥2时,cn=
| 2×3n-1×(n2-2n) |
| n |
∴cn=
|
当n≥2时,Tn=-3+2×0×31+2×1×32+2×2×33+…+2×(n-2)×3n-1,
3Tn=-9+0+2×1×33+…+2×(n-3)3n-1+2×(n-2)•3n,
相减得-2Tn=6+2×32+2×33+…+2×3n-1-2(n-2)×3n=2×
| 3(3n-1-1) |
| 3-1 |
∴Tn=
| 3+(2n-5)×3n |
| 2 |
当n=1时,上式也成立.
∴Tn=
| 3+(2n-5)×3n |
| 2 |
点评:本题考查了利用“当n=1时,a1=S1;当n≥2时,an=Sn-Sn-1”得出an、“累加求和”、“错位相减法”等基础知识与基本技能方法,考查了计算能力,属于难题.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |