题目内容
【题目】在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,以
轴的正半轴为极轴,建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的普通方程和直线
的直角坐标方程;
(2)设点
在
上,点
在
上,求
的最小值及对应的点
的直角坐标.
【答案】(1)
:
,
;(2)当
的坐标为
时,
取最小值
.
【解析】试题分析:
(1)由题意可得曲线
的普通方程和直线
的直角坐标方程分别为
:
,
;
(2)将距离转化为三角函数的问题,据此可得当
的坐标为
时,
取最小值
.
试题解析:
(1)由
消去
得曲线
的普通方程为
,
又
,所以
.
而
,所以直线
的直角坐标方程为
.
(2)设
的坐标
,点
到直线
的距离为
,
,
的最小值即为
的最小值,
当
即
时,
,此时
的坐标为
.
所以当
的坐标为
时,
取最小值![]()
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究。他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子的发芽数,得到如下资料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
=bx+a;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为 得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(附:
,
,其中
,
为样本平均值)
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注:
)