题目内容
已知函数f(x)=sin(x+
)+cos(x-
),x∈R.
(1)求f(x)的最小正周期和最小值;
(2)已知cos(β-α)=
,cos(β+α)=-
,0<α<β≤
,求f(β)的值.
| 7π |
| 4 |
| 3π |
| 4 |
(1)求f(x)的最小正周期和最小值;
(2)已知cos(β-α)=
| 4 |
| 5 |
| 4 |
| 5 |
| π |
| 2 |
(1)∵f(x)=sin(x+
)+cos(x-
)
=sinxcos
+sin
cosx+cosxcos
+sinxsin
=
sinx-
cosx-
cosx+
sinx
∴f(x)=
sinx-
cosx=2sin(x-
),
∴T=2π,f(x)max=2
(2)∵cos(β-α)=cosαcosβ+sinαsinβ=
,cos(β+α)=cosαcosβ-sinαsinβ=-
∴cosαcosβ=0
∵0<α<β≤
?cosβ=0?β=
,
∴f(β)=
| 7π |
| 4 |
| 3π |
| 4 |
=sinxcos
| 7π |
| 4 |
| 7π |
| 4 |
| 3π |
| 4 |
| 3π |
| 4 |
=
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
∴f(x)=
| 2 |
| 2 |
| π |
| 4 |
∴T=2π,f(x)max=2
(2)∵cos(β-α)=cosαcosβ+sinαsinβ=
| 4 |
| 5 |
| 4 |
| 5 |
∴cosαcosβ=0
∵0<α<β≤
| π |
| 2 |
| π |
| 2 |
∴f(β)=
| 2 |
练习册系列答案
相关题目