题目内容
20.△ABC中,角A,B,C所对边分别是a、b、c,且cosA=$\frac{1}{3}$.(1)求sin2$\frac{B+C}{2}$+cos2A的值;
(2)若a=$\sqrt{3}$,求△ABC面积的最大值.
分析 (1)利用诱导公式及二倍角的余弦公式对式子化简,代入即可得到所求值;
(2)运用余弦定理和面积公式,结合基本不等式,即可得到最大值.
解答 解:(1)sin2$\frac{B+C}{2}$+cos2A=sin2$\frac{π-A}{2}$+2cos2A-1
=cos2$\frac{A}{2}$+2cos2A-1=$\frac{1+cosA}{2}$+2cos2A-1
=$\frac{1+\frac{1}{3}}{2}$+2×$\frac{1}{9}$-1=-$\frac{1}{9}$;
(2)cosA=$\frac{1}{3}$,可得sinA=$\sqrt{1-\frac{1}{9}}$=$\frac{2\sqrt{2}}{3}$,
由余弦定理可得a2=b2+c2-2bccosA=b2+c2-$\frac{2}{3}$bc
≥2bc--$\frac{2}{3}$bc=$\frac{4}{3}$bc,
即有bc≤$\frac{3}{4}$a2=$\frac{9}{4}$,当且仅当b=c=$\frac{3}{2}$,取得等号.
则△ABC面积为$\frac{1}{2}$bcsinA≤$\frac{1}{2}$×$\frac{9}{4}$×$\frac{2\sqrt{2}}{3}$=$\frac{3\sqrt{2}}{4}$.
即有b=c=$\frac{3}{2}$时,△ABC的面积取得最大值$\frac{3\sqrt{2}}{4}$.
点评 本题考查三角函数的化简和求值,注意运用诱导公式和二倍角公式,考查三角形的余弦定理和面积公式,以及基本不等式的运用,属于中档题.
练习册系列答案
相关题目
10.已知奇函数f(x)为定义域在R上的可导函数,f(1)=0,当x>0时,xf′(x)-f(x)<0,则x2f(x)>0的解集是( )
| A. | (-∞,-1)∪(1,+∞) | B. | (-∞,-1)∪(0,1) | C. | (-1,0)∪(0,1) | D. | (-1,0)∪(1,+∞) |
8.已知抛物线y2=12x与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线的一个交点的横坐标为12,则双曲线的离心率等于( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | 2$\sqrt{2}$ |
1.已知椭圆x2+ky2=2k(k>0)的一个焦点与抛物线y2=4x的焦点重合,则该椭圆的离心率是( )
| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
6.不等式6x2-13x+6<0的解集为( )
| A. | {x|x<-$\frac{2}{3}$或x>$\frac{3}{2}$} | B. | {x|x<$\frac{2}{3}$或x>$\frac{3}{2}$} | C. | {x|-$\frac{2}{3}$<x<$\frac{3}{2}$} | D. | {x|$\frac{2}{3}$<x<$\frac{3}{2}$} |