题目内容

设a+b=2,则直线系ax+by=1恒过定点的坐标为
(
1
2
1
2
)
(
1
2
1
2
)
分析:根据条件方程可化为a(x-y)+2y-1=0,直线恒过定点,则可得方程组,求出方程组的解,即可得到结论.
解答:解:∵a+b=2,∴b=2-a
∴直线系ax+by=1可化为ax+(2-a)y=1,即a(x-y)+2y-1=0
由题意,
x-y=0
2y-1=0
,∴
x=
1
2
y=
1
2

∴直线系ax+by=1恒过定点的坐标为(
1
2
1
2
)

故答案为:(
1
2
1
2
)
点评:本题考查恒过定点的直线系问题,方程a(x-y)+2y-1=0要使a∈R,则必须x-y=0且2y-1=0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网