题目内容

设(a2+b2)(m2+n2)=(am+bn)2,其中mn≠0,求证:.

分析:关键要结合式子的特点去构造向量.

证明:构造向量c=(a,b),d=(m,n),设〈c,d〉=θ,则cos2θ=()2==1.

所以cosθ=±1,θ=0或θ=π,则c∥d.

于是有.

点评:利用向量数量积的夹角公式、向量平行条件求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网