题目内容
已知等差数列{an}中,a3=5,且a1,a2,a5成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当a2>a1时,若数列{an}的前n项和为Sn,设bn=
,求数列{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当a2>a1时,若数列{an}的前n项和为Sn,设bn=
| n | (n+1)Sn |
分析:(I)由已知可得a22=a1•a5,然后利用等差数列的通项代入可求d与a1的关系,再由a3=a1+2d=5,可求a1,d,进而可求通项
(II)由(1)及a2>a1时,可求an=2n-1,Sn=n2,则bn=
=
=
-
,利用裂项可求数列的和
(II)由(1)及a2>a1时,可求an=2n-1,Sn=n2,则bn=
| n |
| (n+1)n2 |
| 1 |
| (n+1)n |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(I)∵a1,a2,a5成等比数列,
∴
=a1a5,即(a1+d)2=a1(a1+4d)
∴d=0,或d=2a1,(2分)
由a3=a1+2d=5,得,
或
.(4分)
∴an=5或an=2n-1(n∈N*)(6分)
(II)当a2>a1时,an=2n-1,
∴Sn=n2,(8分)
则bn=
=
=
-
(10分)
∴Tn=b1+b2+…+bn=(1-
)+(
-
)+…(
-
)=1-
(12分)
∴
| a | 2 2 |
∴d=0,或d=2a1,(2分)
由a3=a1+2d=5,得,
|
|
∴an=5或an=2n-1(n∈N*)(6分)
(II)当a2>a1时,an=2n-1,
∴Sn=n2,(8分)
则bn=
| n |
| (n+1)n2 |
| 1 |
| (n+1)n |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=b1+b2+…+bn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
点评:本题主要考查; 等差数列的通项公式及等比数列的性质的应用,裂项求和的应用,属于等差数列与等比数列的综合应用
练习册系列答案
相关题目