题目内容
已知二次函数f(x)=
x2+
x,数列{an}的前n和Sn,点(n,Sn)(n∈N*)在函数y=f(x)的图象上.
(1)求{an}的通项公式
(2)设bn=
,求数列{bn}的前n项和Tn.
| 1 |
| 2 |
| 3 |
| 2 |
(1)求{an}的通项公式
(2)设bn=
| 1 |
| anan+1 |
分析:(1)根据点(n,Sn)(n∈N*)在函数y=f(x)的图象上,可得Sn=
n2+
n,判断数列{an}为等差数列,再求出等差数列的通项公式即可.
(2)把{an}的通项公式代入bn=
,化简,再用裂项相消求数列{bn}的前n项和Tn.
| 1 |
| 2 |
| 3 |
| 2 |
(2)把{an}的通项公式代入bn=
| 1 |
| anan+1 |
解答:解:(1)由题意得:Sn=f(n)=
n2+
n∴数列{an}为等差数列
a1=s1=2,a2=s2-s1=5-2=3,∴d=a2-a1=3-2=1
∴an=n+1
(2)bn=
=
=
-
∴Tn=(
-
)+(
-
)+…+(
-
)=
-
=
| 1 |
| 2 |
| 3 |
| 2 |
a1=s1=2,a2=s2-s1=5-2=3,∴d=a2-a1=3-2=1
∴an=n+1
(2)bn=
| 1 |
| anan+1 |
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n+2 |
| n |
| 2(n+2) |
点评:本题主要考察了等差数列的通项公式的求法,以及裂项相消求数列的前n项和,属于数列的常规题.
练习册系列答案
相关题目