题目内容

已知定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=
2x4x+1

(1)求f(x)在[-1,1]上的解析式;
(2)证明:f(x)在(0,1)上是减函数.
分析:(1)定义在R上的奇函数f(x),可得f(0)=0,及x∈(-1,0)时f(x)的解析式,x=-1和1时,同时结合奇偶性和单调性求解.
(2)证明单调性可用定义或导数解决.
解答:(1)解当x∈(-1,0)时,-x∈(0,1).
∵f(x)是奇函数,∴f(x)=-f(-x)=-
2-x
4-x+1
=-
2x
4x+1

由f(0)=f(-0)=-f(0),
且f(1)=-f(-1)=-f(-1+2)=-f(1),
得f(0)=f(1)=f(-1)=0.∴在区间[-1,1]上,有f(x)=
2x
4x+1
    x∈(0,1)
-
2x
4x+1
     x∈(-1,0)
0               x∈{-1,0,1}

(2)证明当x∈(0,1)时,f(x)=
2x
4x+1
,设0<x1<x2<1,
则f(x1)-f(x2)=
2x1
4x1+1
-
2x2
4x2+1
=
(2x2-2x1)(2x1+x2-1)  
(4x1+1)(4x2+1) 

∵0<x1<x2<1,∴2x2-2x1>0,2x2+x1-1>0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),
故f(x)在(0,1)上单调递减.
点评:本题考查奇偶性、周期性的综合应用,及函数单调性的证明,综合性较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网