题目内容
(2013•广州二模)(坐标系与参数方程选做题)
在极坐标系中,已知点A(1,
),点P是曲线ρsin2θ=4cosθ上任意一点,设点P到直线ρcosθ+1=0的距离为d,则丨PA丨+d的最小值为
.
在极坐标系中,已知点A(1,
| π |
| 2 |
| 2 |
| 2 |
分析:先利用直角坐标与极坐标间的关系,将点A的极坐标、直线及曲线的极坐标方程化成直角坐标或方程,再利用直角坐标方程的形式,由抛物线的定义可得丨PA丨+d=|PF|+|PA|≥|AF|,当A,P,F三点共线时,其和最小,再求出|AF|的值即可.
解答:
解:点A(1,
)的直角坐标为A(0,1),
曲线曲线ρsin2θ=4cosθ的普通方程为y2=4x,是抛物线.
直线ρcosθ+1=0的直角坐标方程为x+1=0,是准线.
由抛物线定义,点P到抛物线准线的距离等于它到焦点A(0,1)的距离,
所以当A,P,F三点共线时,其和最小,
最小为|AF|=
,
故答案为:
.
| π |
| 2 |
曲线曲线ρsin2θ=4cosθ的普通方程为y2=4x,是抛物线.
直线ρcosθ+1=0的直角坐标方程为x+1=0,是准线.
由抛物线定义,点P到抛物线准线的距离等于它到焦点A(0,1)的距离,
所以当A,P,F三点共线时,其和最小,
最小为|AF|=
| 2 |
故答案为:
| 2 |
点评:本小题主要考查点的极坐标和直角坐标的互化、抛物线的简单性质,解题的关键是抛物线的定义解题.
练习册系列答案
相关题目