题目内容
已知数列{an}的前项和为Sn,点(an+2,Sn+1)在直线y=4x-5上,其中n∈N,令bn=an+1-2an,且a1=1.
(1)求证数列{bn}是等比数列;
(2)求数列{nbn}的前n项和Tn.
(1)求证数列{bn}是等比数列;
(2)求数列{nbn}的前n项和Tn.
(1)因为点(an+2,Sn+1)在直线y=4x-5上;
∴Sn+1=4(an+2)-5=4an+3; ①
s2=4a1+3=a1+a2?a2=4;
∴Sn=4an-1+3;②
∴①-②:an+1=4an-4an-1;
∴an+1-2an=2(an-2an-1);
数列{an-2an-1}是以2为首相,2为公比的等比数列;
即数列{bn}是等比数列;
所以:bn=an+1-2an=2n+1;
(2)∵nbn=n•2n+1;
∴Tn=1×22+2×23+3×24+…+n•2n+1;③
∴2Tn=1×23+2×24+…+(n-1)•2n+1+n•2n+2;④
③-④:-Tn=1×22+23+24+…+2n+1-n•2n+2=
-n•2n+2=4+(1-n)•2n+2;
∴Tn=4+(n-1)•2n+2.
∴Sn+1=4(an+2)-5=4an+3; ①
s2=4a1+3=a1+a2?a2=4;
∴Sn=4an-1+3;②
∴①-②:an+1=4an-4an-1;
∴an+1-2an=2(an-2an-1);
数列{an-2an-1}是以2为首相,2为公比的等比数列;
即数列{bn}是等比数列;
所以:bn=an+1-2an=2n+1;
(2)∵nbn=n•2n+1;
∴Tn=1×22+2×23+3×24+…+n•2n+1;③
∴2Tn=1×23+2×24+…+(n-1)•2n+1+n•2n+2;④
③-④:-Tn=1×22+23+24+…+2n+1-n•2n+2=
| 22(1-2n) |
| 1-2 |
∴Tn=4+(n-1)•2n+2.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |