题目内容
已知等差数列{an}的前n项和为Sn,且满足:a3=6,a2+a5=14.
(1)求an及Sn.
(2)令bn=
(n∈N*),求{bn}的前n项和Tn.
(1)求an及Sn.
(2)令bn=
| 4 |
| an+1•an |
解(1)设等差数列{an}的首项为a1,公差为d.
则由已知
,得出
,解得
,所以an=2+(n-1)×2=2n
Sn=n×2+
×2=n2+n
(2)bn=
=
=
-
和Tn=(1-
)+(
-
)+…+(
-
)=1-
=
则由已知
|
|
|
Sn=n×2+
| n(n-1) |
| 2 |
(2)bn=
| 4 |
| 2(n+1)•2n |
| 1 |
| (n+1)•n |
| 1 |
| n |
| 1 |
| n+1 |
和Tn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
练习册系列答案
相关题目