题目内容
已知等差数列{an},前n项和为Sn,若a3=3,S4=10
(1)求通项公式an;
(2)求Sn的最小值;
(3)令bn=
,求数列{bn}的前n项和Tn.
(1)求通项公式an;
(2)求Sn的最小值;
(3)令bn=
| 1 | 4an2-1 |
分析:(1)利用a3=3,S4=10,求出数列的首项和公差,然后求通项公式.(2)求出Sn的表达式,然后利用二次函数或利用等差数列的性质求最小值.
(3)求出数列{bn}的通项公式,然后利用裂项法求数列{bn}的前n项和Tn.
(3)求出数列{bn}的通项公式,然后利用裂项法求数列{bn}的前n项和Tn.
解答:解:(1)由题意可知,
⇒
,所以an=1+(n-1)×1=n.
(2)方法1:因为公差d=1>0,所以等差数列为递增数列,所以Sn≥S1=1.
方法2:Sn=
=
(n+
)2-
,对称轴为n=-
,所以当n=1时,Sn最小为S1=1.
(3)因为bn=
=
=
=
(
-
),
所以Tn=b1+b2+…+bn=
[1-
+
-
+…+
-
]=
(1-
)=
.
|
|
(2)方法1:因为公差d=1>0,所以等差数列为递增数列,所以Sn≥S1=1.
方法2:Sn=
| n(n+1) |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 8 |
| 1 |
| 2 |
(3)因为bn=
| 1 | ||
4
|
| 1 |
| 4n2-1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
所以Tn=b1+b2+…+bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
点评:本题主要考查了等差数列的通项公式以及前n项和,以及利用裂项法求数列的和的问题,要求熟练掌握.
练习册系列答案
相关题目