题目内容
已知函数f(x)=2sin(x+| α |
| 2 |
| α |
| 2 |
| 3 |
| α |
| 2 |
(1)求f(x)的最小正周期.
(2)若0≤α≤π,求使f(x)为偶函数的α的值.
分析:(1)f(x)=sin(2x+α)+
cos(2x+α)+
=2sin(2x+α+
)+
,最小正周期为
=π.
(2)要使f(x)=2sin(2x+α+
)+
为偶函数,α+
=kπ+
,k∈z,根据α的范围,求出α的大小.
| 3 |
| 3 |
| π |
| 3 |
| 3 |
| 2π |
| 2 |
(2)要使f(x)=2sin(2x+α+
| π |
| 3 |
| 3 |
| π |
| 3 |
| π |
| 2 |
解答:解:(1)f(x)=sin(2x+α)+
cos(2x+α)+
=2sin(2x+α+
)+
,
故最小正周期为
=π.
(2)若0≤α≤π,要使f(x)=2sin(2x+α+
)+
为偶函数,α+
=kπ+
,k∈z,
∴α=kπ+
,再根据0≤α≤π,可得 α=
.
| 3 |
| 3 |
| π |
| 3 |
| 3 |
故最小正周期为
| 2π |
| 2 |
(2)若0≤α≤π,要使f(x)=2sin(2x+α+
| π |
| 3 |
| 3 |
| π |
| 3 |
| π |
| 2 |
∴α=kπ+
| π |
| 6 |
| π |
| 6 |
点评:本题考查两角和正弦公式,正弦函数的周期性、奇偶性,求出f(x)的解析式为2sin(2x+α+
)+
,是解题的关键.
| π |
| 3 |
| 3 |
练习册系列答案
相关题目