题目内容

【题目】已知函数f(x)=|x﹣a|﹣|x﹣4a|(a>0),若对x∈R,都有f(2x)﹣1≤f(x),则实数a的最大值为(  )
A.
B.
C.
D.1

【答案】B
【解析】解:f(2x)﹣1≤f(x)恒成立,即|2x﹣a|﹣|2x﹣4a|﹣1≤|x﹣a|﹣|x﹣4a|恒成立,
即|2x﹣a|+|x﹣4a|≤|x﹣a|+|2x﹣4a|+1恒成立.
此不等式中,绝对值的“根”共有4个: , a,2a,4a,
当x<时,不等式即 a﹣2x+4a﹣x≤a﹣x+4a﹣2x+1,即0≤1.
≤x<a时,不等式即 2x﹣a+4a﹣x≤a﹣x+4a﹣2x+1,即2x﹣≤a,故有2a﹣≤a,即a≤
当a≤x<2a时,不等式即 2x﹣a+4a﹣x≤x﹣a+4a﹣2x+1,即x≤
当2a≤x<4a时,不等式即 2x﹣a+4a﹣x≤x﹣a+2x﹣4a+1,即 8a≤2x+1,故8a≤4a+1,可得a≤
当x≥4a时,不等式即 2x﹣a+x﹣4a≤a﹣x+2x﹣4a+1,即0≤1.
综上可得,a≤ , 故a的最大值为
故选:B.
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网