题目内容
函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f(x)′<0,设a=f(-1),b=f(
),c=f(4)则( )
| 1 |
| 3 |
| A.a<b<c | B.c<b<a | C.c<a<b | D.b<c<a |
x∈(-∞,1)时,x-1<0,由(x-1)•f'(x)<0,知f'(x)>0,
所以(-∞,1)上f(x)是增函数.
∵f(x)=f(2-x),
∴f(3)=f(2-3)=f(-1)
所以f(-1)<(0)<f(
),
因此c<a<b.
故选C.
所以(-∞,1)上f(x)是增函数.
∵f(x)=f(2-x),
∴f(3)=f(2-3)=f(-1)
所以f(-1)<(0)<f(
| 1 |
| 2 |
因此c<a<b.
故选C.
练习册系列答案
相关题目
已知函数f(x)=
,令g(x)=f(
).
(1)求函数f(x)的值域;
(2)任取定义域内的5个自变量,根据要求计算并填表;观察表中数据间的关系,猜想一个等式并给予证明;
(3)如图,已知f(x)在区间[0,+∞)的图象,请据此在该坐标系中补全函数f(x)在定义域内的图象,并在同一坐标系中作出函数g(x)的图象.请说明你的作图依据.
| 1 |
| x2+1 |
| 1 |
| x |
(1)求函数f(x)的值域;
(2)任取定义域内的5个自变量,根据要求计算并填表;观察表中数据间的关系,猜想一个等式并给予证明;
| x | … | |||||||
f(x)-
|
… | |||||||
g(x)-
|
… |