题目内容
(2012•德州一模)已知数列{an}的前n项和为Sn,满足Sn+2n=2an.
(I)证明:数列{an+2}是等比数列,并求数列{an}的通项公式an;
(Ⅱ)若数列{bn}满足bn=log2(an+2),求证:
+
+…+
<1.
(I)证明:数列{an+2}是等比数列,并求数列{an}的通项公式an;
(Ⅱ)若数列{bn}满足bn=log2(an+2),求证:
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
分析:(I)由Sn+2n=2an得Sn=2an-2n,再写一式,两式相减,即可证数列{an+2}是以a1+2为首项,以2为公比的等比数列,从而可求数列{an}的通项公式an;
(Ⅱ)由bn=log2(an+2)=log22n+1=n+1,则
=
<
=
-
,由此可证结论.
(Ⅱ)由bn=log2(an+2)=log22n+1=n+1,则
| 1 |
| bn2 |
| 1 |
| (n+1)2 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:证明:(I)由Sn+2n=2an得 Sn=2an-2n
当n∈N*时,Sn=2an-2n,①
当n=1 时,S1=2a1-2,则a1=2,
则当n≥2,n∈N*时,Sn-1=2an-1-2(n-1).②
①-②,得an=2an-2an-1-2,即an=2an-1+2,∴an+2=2(an-1+2)
∴数列{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1,
∴an=2n+1-2.
(Ⅱ)由bn=log2(an+2)=log22n+1=n+1,
∴
=
<
=
-
∴
+
+…+
=(1-
)+(
-
)+…+(
-
)=1-
<1.
当n∈N*时,Sn=2an-2n,①
当n=1 时,S1=2a1-2,则a1=2,
则当n≥2,n∈N*时,Sn-1=2an-1-2(n-1).②
①-②,得an=2an-2an-1-2,即an=2an-1+2,∴an+2=2(an-1+2)
∴数列{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1,
∴an=2n+1-2.
(Ⅱ)由bn=log2(an+2)=log22n+1=n+1,
∴
| 1 |
| bn2 |
| 1 |
| (n+1)2 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
点评:本题考查数列递推式,考查等比数列的证明,考查数列的通项,考查不等式的证明,确定数列的通项,正确放缩是关键.
练习册系列答案
相关题目