题目内容

6.已知数列{an},a1=2,an+1=$\frac{{a}_{n}^{2}+2}{2{a}_{n}}$,求数列{an}的通项公式.

分析 通过对an+1=$\frac{{a}_{n}^{2}+2}{2{a}_{n}}$变形可知an+1+$\sqrt{2}$=$\frac{({a}_{n}+\sqrt{2})^{2}}{2{a}_{n}}$、an+1-$\sqrt{2}$=$\frac{({{a}_{n}-\sqrt{2})}^{2}}{2{a}_{n}}$,两者作商、整理可知数列{lg$\frac{{a}_{n}-\sqrt{2}}{{a}_{n}+\sqrt{2}}$}是以2lg$(\sqrt{2}-1)$为首项、2为公比的等比数列,进而计算可得结论.

解答 解:∵an+1=$\frac{{a}_{n}^{2}+2}{2{a}_{n}}$,
∴an+1+$\sqrt{2}$=$\frac{{a}_{n}^{2}+2}{2{a}_{n}}$+$\sqrt{2}$
=$\frac{{{a}_{n}}^{2}+2\sqrt{2}{a}_{n}+2}{2{a}_{n}}$
=$\frac{({a}_{n}+\sqrt{2})^{2}}{2{a}_{n}}$,
同理an+1-$\sqrt{2}$=$\frac{({{a}_{n}-\sqrt{2})}^{2}}{2{a}_{n}}$,
两式作商可知:$\frac{{a}_{n+1}-\sqrt{2}}{{a}_{n+1}+\sqrt{2}}$=$(\frac{{a}_{n}-\sqrt{2}}{{a}_{n}+\sqrt{2}})^{2}$,
两边同时取对数可知:lg$\frac{{a}_{n+1}-\sqrt{2}}{{a}_{n+1}+\sqrt{2}}$=2lg$\frac{{a}_{n}-\sqrt{2}}{{a}_{n}+\sqrt{2}}$,
又∵lg$\frac{{a}_{1}-\sqrt{2}}{{a}_{1}+\sqrt{2}}$=lg$\frac{2-\sqrt{2}}{2+\sqrt{2}}$=lg$(\sqrt{2}-1)^{2}$=2lg$(\sqrt{2}-1)$,
∴数列{lg$\frac{{a}_{n}-\sqrt{2}}{{a}_{n}+\sqrt{2}}$}是以2lg$(\sqrt{2}-1)$为首项、2为公比的等比数列,
∴lg$\frac{{a}_{n}-\sqrt{2}}{{a}_{n}+\sqrt{2}}$=2nlg$(\sqrt{2}-1)$,
∴$\frac{{a}_{n}-\sqrt{2}}{{a}_{n}+\sqrt{2}}$=$1{0}^{{2}^{n}lg(\sqrt{2}-1)}$
=$(1{0}^{lg(\sqrt{2}-1)})^{{2}^{n}}$
=$(\sqrt{2}-1)^{{2}^{n}}$,
整理化简可知:an=$\sqrt{2}$•$\frac{1+(\sqrt{2}-1)^{{2}^{n}}}{1-(\sqrt{2}-1)^{{2}^{n}}}$,
又∵a1=$\sqrt{2}•\frac{1+({\sqrt{2}-1)}^{2}}{1-(\sqrt{2}-1)^{2}}$=2,符合题意,
∴an=$\sqrt{2}$•$\frac{1+(\sqrt{2}-1)^{{2}^{n}}}{1-(\sqrt{2}-1)^{{2}^{n}}}$.

点评 本题考查数列的通项,考查运算求解能力,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网