题目内容

在椭圆
x2
a2
+
y2
b2
=1(a>b>0)
中,F1,F2分别是其左右焦点,若|PF1|=2|PF2|,则该椭圆离心率的取值范围是(  )
A、(
1
3
,1)
B、[
1
3
,1)
C、(0,
1
3
)
D、(0,
1
3
]
分析:先根据椭圆的定义求得|PF1|+|PF2|=2a,进而根据|PF1|=2|PF2|求得|PF2|利用椭圆的几何性质可知|PF2|≥a-c,求得a和c的不等式关系,进而求得e的范围,最后根据e<1,综合可求得椭圆离心率的取值范围.
解答:解:根据椭圆定义|PF1|+|PF2|=2a,将设|PF1|=2|PF2|代入得|PF2|=
2a
3

根据椭圆的几何性质,|PF2|≥a-c,故
2a
3
≥a-c
,即a≤3c
,故
c
a
1
3
,即e≥
1
3
,又e<1,
故该椭圆离心率的取值范围是[
1
3
,1)

故选B.
点评:本题主要考查了椭圆的定义,考查了学生对基础知识的理解和掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网