题目内容
如果f(x)=mx2+(m-1)x+1在区间(-∞,1]上为单调递减函数,则m的取值范围是
A.(0,]
B.[0,)
C.[0,]
D.(0,)
如果f(x)=mx2+(m-1)x+1在区间(-∞,1]上为减函数,则m的取值范围是
A.
B.
C.
D.
已知f(x)=x3+mx2-x+2(m∈R)
如果函数的单调减区间恰为(-,1),求函数f(x)的解析式;
(2)若f(x)的导函数为f '(x),对任意x∈(0,+∞),不等式f '(x)≥2xlnx-1恒成立,求实数m的取值范围.
设f(x)=x3+mx2+nx.
(1)如果g(x)=f′(x)-2x-3在x=-2处取得最小值-5,求f(x)的解析式;
(2)如果m+n<10(m,n∈N*),f(x)的单调递减区间的长度是正整数,试求m和n的值.(注:区间(a,b)的长度为b-a).
设有两个命题:①关于x的不等式mx2+1>0的解集是R;②函数f(x)=logmx是减函数,如果这两个命题中有且只有一个真命题,则实数m的取值范围是________.