题目内容
在△ABC中,A,B,C为它的三个内角,设向量
=(cos
,sin
),
=(cos
,-sin
),且
与
的夹角为
.
(I)求角B的大小;
(II)已知tanC=
,求
的值.
| p |
| B |
| 2 |
| B |
| 2 |
| q |
| B |
| 2 |
| B |
| 2 |
| p |
| q |
| π |
| 3 |
(I)求角B的大小;
(II)已知tanC=
| ||
| 2 |
| sin2A•cosA-sinA |
| sin2A•cos2A |
(I)∵
•
=cos2
-sin2
=cos2B,|
|=
=1=|
|,且
与
的夹角为
.
∴cos
=
,得到
=cos2B,
∵B∈(0,π),∴2B∈(0,2π),∴2B=
或2π-
,解得B=
或
.
(II)∵tanC=
,C∈(0,π),∴sinC=
,cosC=
.
∴C>
,因此只能取B=
.
∴cosA=-cos(B+C)=-(cosBcosC-sinBsinC)=-(
×
-
×
)=-
.
∵
=
=
=
=-
.
| p |
| q |
| B |
| 2 |
| B |
| 2 |
| p |
cos2
|
| q |
| p |
| q |
| π |
| 3 |
∴cos
| π |
| 3 |
| ||||
|
|
| 1 |
| 2 |
∵B∈(0,π),∴2B∈(0,2π),∴2B=
| π |
| 3 |
| π |
| 3 |
| π |
| 6 |
| 5π |
| 6 |
(II)∵tanC=
| ||
| 2 |
| ||
|
| 2 | ||
|
∴C>
| π |
| 6 |
| π |
| 6 |
∴cosA=-cos(B+C)=-(cosBcosC-sinBsinC)=-(
| ||
| 2 |
| 2 | ||
|
| 1 |
| 2 |
| ||
|
| ||
| 14 |
∵
| sin2A•cosA-sinA |
| sin2A•cos2A |
| 2sinAcosAcosA-sinA |
| 2sinAcosAcos2A |
| 2cos2A-1 |
| 2cosAcos2A |
| 1 |
| 2cosA |
2
| ||
| 3 |
练习册系列答案
相关题目
在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是( )
A、
| ||||
| B、1 | ||||
C、
| ||||
D、
|