题目内容

在△ABC中,设a,b,c是角A,B,C所对的边,S是该三角形的面积,且4cosBsin2
B
2
+cos2B=0

(I)求角B的度数;
(II)若a=4,S=5
3
,求b的值.
(I)由4cosBsin2
B
2
+cos2B=0

4cosB
1-cosB
2
+2cos2B-1=0

所以cosB=
1
2

∵0<B<π,∴B=
π
3

(II)由S=
1
2
acsinB
,得c=
2S
asinB
=
2×5
3
4sinπ
=5

则b2=a2+c2-2accosB=16+25-2×4×5×
1
2
=21

∵b>0,∴b=
21
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网