题目内容
设数列{an}为等比数列,公比q=2,则| a2+3a4+5a7 | a4+3a6+5a9 |
分析:把所求的式子分子分母利用等比数列的通项公式化简,分母提取q2后约分即可把所求的式子化简为关于q的式子,把q的值代入即可求出值.
解答:解:∵q=2,
∴
=
=
=
=
.
故答案为:
.
∴
| a2+3a4+5a7 |
| a4+3a6+5a9 |
| a1q+3a1q3+5a1q6 |
| a1q3+3a1q5+ 5a1q8 |
=
| a1q+3a1q3+5a1q6 |
| q2(a1q +3a1q3+ 5a1q6) |
| 1 |
| q2 |
| 1 |
| 4 |
故答案为:
| 1 |
| 4 |
点评:此题考查了等比数列的通项公式,熟练掌握等边数列的通项公式是解本题的关键.
练习册系列答案
相关题目