题目内容
8.函数f(x)=$\left\{\begin{array}{l}{x+{e}^{x}-1(x≥0)}\\{x-{e}^{-x}+1(x<0)}\end{array}\right.$.(1)判断函数f(x)的奇偶性;
(2)是否存在不同的实数a,b,使得当x∈[a,b]时,函数f(x)的值域为[a,b+3],若存在,求出所有的a,b的值;若不存在,请说明理由.
分析 (1)根据函数奇偶性的定义即可判断函数f(x)的奇偶性;
(2)根据条件判断函数的单调性,利用函数的单调性建立方程组关系即可得到结论.
解答 解:(1)若x>0,则-x<0,则f(-x)=-x-ex+1=-(x+ex-1)=-f(x),
若x<0,则-x>0,则f(-x)=-x+e-x-1=-(x-ex+1)=-f(x),
f(0)=0,
综上f(-x)=-f(x),即函数f(x)是奇函数.
(2)当x≥0时,f(x)=x+ex-1为增函数,
∵f(x)是奇函数,
∴在(-∞,+∞)上f(x)为增函数,
若存在不同的实数a,b,使得当x∈[a,b]时,函数f(x)的值域为[a,b+3],
则$\left\{\begin{array}{l}{f(a)=a}\\{f(b)=b+3}\end{array}\right.$,
①若a≥0,则$\left\{\begin{array}{l}{f(a)=a+{e}^{a}-1=a}\\{b+{e}^{b}-1=b+3}\end{array}\right.$,即$\left\{\begin{array}{l}{{e}^{a}=1}\\{{e}^{b}=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=0}\\{b=ln4}\end{array}\right.$,满足条件.
②若b<0,则$\left\{\begin{array}{l}{f(a)=a-{e}^{-a}+1=a}\\{f(b)=b-{e}^{-b}+1=b+3}\end{array}\right.$,即$\left\{\begin{array}{l}{{e}^{-a}=1}\\{{e}^{-b}=-2}\end{array}\right.$此时方程组无解,
③若a<0,b≥0,则$\left\{\begin{array}{l}{f(a)=a-{e}^{-a}+1=a}\\{f(b)=b+{e}^{b}-1=b+3}\end{array}\right.$,即$\left\{\begin{array}{l}{{e}^{-a}=1}\\{{e}^{b}=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=0}\\{b=ln2}\end{array}\right.$此时a=0不成立,
综上存在a=0,b=ln4,使得当x∈[a,b]时,函数f(x)的值域为[a,b+3].
点评 本题主要考查函数奇偶性的判断,以及函数单调性和奇偶性的应用,注意利用分类讨论的数学思想.
| A. | 0 | B. | 1 | C. | 2 | D. | 无数多个 |