题目内容
等差数列{an},{bn}的前n项和分别为Sn与Tn,若
=
,则
等于( )
| Sn |
| Tn |
| 2n |
| 3n+1 |
| lim |
| n→∞ |
| an |
| bn |
| A、1 | ||||
B、
| ||||
C、
| ||||
D、
|
分析:利用等差数列的性质求得
=
,再求极限.
| an |
| bn |
| s2n-1 |
| T2n-1 |
解答:解:∵
=
=
=
=
∴
=
=
=
故选C
| an |
| bn |
| 2an |
| 2bn |
| a1+a2n-1 |
| b1+b2n-1 |
| ||
|
| s2n-1 |
| T2n-1 |
∴
| lim |
| n→∞ |
| an |
| bn |
| lim |
| n→∞ |
| s2n-1 |
| T2n-1 |
| lim |
| n→∞ |
| 2n-1 |
| 3n-1 |
| 2 |
| 3 |
故选C
点评:本题主要考查等差数列的性质的运用.
练习册系列答案
相关题目