题目内容
如果函数
(a>0)没有零点,则a的取值范围为
- A.(0,1)
- B.(0,1)

- C.(0,1)∪(2,+∞)
- D.
∪(2,+∞)
C
分析:根据函数
(a>0)没有零点,即函数y=
与y=
的图象没有交点,在同一坐标系中画出它们的图象,即可求出a的取值范围.
解答:令
,得
令y=
是半径为
圆心在原点的圆的上半部分,y=
以(0,
)端点的折线,在同一坐标系中画出它们的图象:如图,根据图象知,由于两曲线没有公共点,故圆到折线的距离小于1,或者圆心到折线的距离大于半径
∴a的取值范围为(0,1)∪(2,+∞)
故选C.
点评:此题考查函数零点与函数图象的交点之间的关系,体现了转化的数学思想方法,属中档题.
分析:根据函数
解答:令
令y=
∴a的取值范围为(0,1)∪(2,+∞)
故选C.
点评:此题考查函数零点与函数图象的交点之间的关系,体现了转化的数学思想方法,属中档题.
练习册系列答案
相关题目